Differentiation

Finding gradient:

Basic Differentiation:

From first principle:

Exercise:

For each of these functions of x, find the gradient function.

(i)
$$y = x^5$$

(iii)
$$z = 7x^6$$

(iii)
$$p = 11$$

(iii)
$$z = 7x^6$$
 (iii) $p = 11$ (iv) $f(x) = \frac{3}{x}$

Differentiate $y = 3x^2 + 4x^3$.

Differentiate
$$f(x) = \frac{(x^2 + 1)(x - 5)}{x}$$

Differentiation in context:

Given that $y = \sqrt{x} - \frac{8}{x^2}$, find

- (i) $\frac{\mathrm{d}y}{\mathrm{d}x}$
- (ii) the gradient of the curve at the point $(4, 1\frac{1}{2})$.

Figure 5.10 shows the graph of

$$y = x^2(x-6) = x^3 - 6x^2$$
.

Find the gradient of the curve at the points A and B where it meets the x axis.

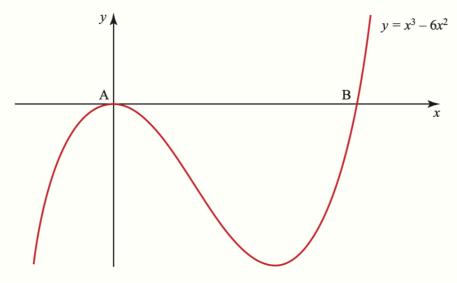


Figure 5.10

Find the points on the curve with equation $y = x^3 + 6x^2 + 5$ where the value of the gradient is -9.